
UniSon 0.70b1
User’s Guide

UniSon is a software system which works in conjunction with a Sound Accelerator
or AudioMedia card available from Digidesign corporation. It allows the user to 
create sound synthesis and signal processing algorithms by connecting 
functional units using a graphical user interface. New devices can be created by 
the interconnection of existing devices, or by writing 56001 DSP code “from 
scratch”. 

Disclaimer: This is still a very preliminary version of the system. There are large
sections which are missing completely (cutting and pasting, repositioning 
devices, stereo outputs, etc.), known bugs, and much to do in the way of future 
expansion. Since this is a part-time project for a single individual, progress is 
slow. Please send any comments, suggestions, complaints, requests, ideas, etc. 
to:

Dr. John A. Bate
Department of Computer Science
545 Machray Hall
University of Manitoba
Winnipeg, Manitoba, Canada
R3T 2N2

Phone: (204) 474-6791
FAX: (204) 269-9178
Email: BATE@CS.UMANITOBA.CA

A Quick Tour of UniSon

To see the basic operation of the UniSon system, follow the steps outlined below.

1.Start up UniSon by double-clicking on its icon. An untitled file will be opened. 
Close it using the “go away” box or by choosing “Close File” from the file 
menu. Open the file “Demos 0.70b1” instead using the “Open File” menu 
choice. 

2. If using an AudioMedia card, select the “DSP Parameters...” item from the 
“Circuit” menu, and click on the “Audiomedia” button. (*NOTE*: Most of the 

–1–



other options here are not yet fully implemented and probably will *not* work. 
Sorry.) Choose “Enable Card” from the “Circuit” menu. This will start up the 
signal processor. If this doesn’t work (because you don’t have a card installed),
you will still be able to do everything, but you will get no sound (which is 
rather pointless, really).

3.Select the “Manual FM” circuit from the “Circuits” half of the file window, and 
then press the “Edit Circuit” button (or simply double-click on “Manual FM”). 
You now have an active UniSon circuit.

4. Click on the small “On/Off” button on the right side of the screen. You should 
hear a simple two-operator FM tone. Try changing the carrier frequency, 
modulator frequency, modulation index, and pitch by using the small slider 
controls. (Leave the 1/Pi control alone, if you want the modulation index to be 
accurate.) Click on the two envelope symbols to try different carrier and 
modulator envelopes.

This illustrates the concept of a circuit in UniSon. Each device showing on the 
screen in the circuit window represents a block of DSP code which performs a 
certain function. A device may have inputs and outputs, as well as internal 
controls which affect its operation. Each connecting line represents a 44.1 kHz 
digital signal stream, and the DSP code for each device is executed 44,100 times
per second. Changes made to the controls affect the signal processor instantly. 
Changes made to the circuit itself also result in almost immediate 
reprogramming of the DSP. Here is how to construct a circuit of your own:

5.Close the “Manual FM” window and return to the file window. Click on the “New
Circuit” button. This will create a new untitled circuit window.

6.Click on the name “Output” in the list of device names in the bottom left-hand 
corner of the window. An output device will appear in the “chute” above that 
list. Using the mouse, drag that output device into the main part of the 
window, positioning it centered at the bottom of the window. (In the current 
version, it is not possible to move a device. It must be positioned properly the 
first time.)

7.Click on the name “Cntl Sine Osc.” (you may have to scroll down to see it) and 
place one of these devices above the output device but not touching it. 
(Devices cannot be connected by simply placing them so that their pins 
coincide. You must use a short “wire” to actually make a connection. I told you 
it needed work!)

8. Connect the output pin of the Sine Oscillator to the input pin of the “Output” 
device. (Press the mouse button with the cursor on or near the tip of the 

–2–



output pin. The cursor should be a small cross. If it is an arrow, you are too far 
from the pin. Drag the mouse to the tip of the input pin of the other device, 
and release the mouse button.)

9.The upper scroll bar controls frequency and the lower one controls amplitude. 
Click on the “units” boxes which currently contain “Dec” to change them to 
“Hz” and “dB”, respectively. Drag the longer sliders around to change the 
amplitude and frequency and hear a nice pure sine wave. The shorter sliders 
control the sensitivity or range of motion of the large sliders (from ultra-coarse 
to ultra-fine). You can also click on the value to bring up a dialog which allows 
you to enter the desired value.

10. Click on the “scissors” icon in the top left corner. Delete the “Control 
Sine” device and the short wire by zapping them with the lightning bolt. 
Select the “drawing” (hand holding a pen) icon in the top left corner again.

11. Create a simple MIDI-controlled sine wave voice (if you have MIDI input 
to your Mac) using one each of the “Sine Osc.”, “Output”, “Multiplier”, and 
“MIDI Note” devices. (If you have no MIDI input device, use two scroll bars and
a button instead.) Connect the “f” output of the MIDI device to the “f” input of 
the oscillator, connect the “A” and “Gate” outputs to the two inputs of the 
multiplier, and connect the output of the multiplier to the amplitude (“A”) 
input of the oscillator. Connect the sine oscillator output to the output device. 
This version of UniSon supports (and requires) the MIDI Manager, and so you 
should now use the “Patch Bay” to connect some source of MIDI data to 
UniSon. Change the MIDI channel number by clicking on it, if desired, and 
then play your circuit via MIDI. I think you get the idea now, right? 

This illustrates operation of the circuit window. You can create your own primitive
devices, however, and this is illustrated below.

12. Take a look at the “Modular FM” circuit by opening it from the file 
window. Note that it produces no sound, since there is no output device, nor is
there a control for the frequency or the “gate” (on/off). Instead, it contains 
devices called “Input Pins” and “Output Pins” which simply give these signals 
names. These devices are available from the same list as the oscillators, etc.

13. Close the circuit window(s) and get back to the file window. Click the 
“New Device” button. We will create a new device which encapsulates the 
entire “Manual FM” circuit. First, you will need an appropriate picture. The 
HyperCard stack supplied contains an appropriate picture (labelled “Manual 
FM Picture”). Go and cut the picture from there. (If you are not running 
multifinder or System 7 you will have to exit from UniSon and then come back

–3–



later, of course.) Make sure that the picture is cropped absolutely precisely. 
The tips of the I/O pins must be exact multiples of 5 pixels away from the top 
left corner of the picture. The background of the cards in the HyperCard stack 
is a 5 pixel grid to make this easy. Cut out the picture carefully.

14. Once you have cut/copied your picture, get back to the device window 
in UniSon and select “Paste”. The picture should appear.

15. Now we need to tell UniSon what this device is supposed to do. Click on 
the “Convert Circuit” button and select the “Modular FM” circuit from the list 
that is presented to you.

16. The device editor now knows the DSP code needed for this device, and 
what I/O pins and internal controls it has. Now it must be told the positions of 
those pins and controls in the graphical picture of the device. Click in turn on 
each pin name and position it by clicking on the endpoints of the 
corresponding pins in the picture. Position all of the controls similarly except 
for the “1/π.bar” control. That is meant to be a constant which the user should
not be able to see or modify. The mouse controls the position of the top left 
corner of each control. Note that the “Title” control automatically adjusts to 
use the entire width of the device.

17. Select the “Save Device As...” item from the File menu. It will warn you 
that you have not used all the controls, but that is intentional. Click the “Go 
Ahead” button. Give your device a name and then close the device window. 
Your new device should appear at the top of the list in the “devices” half of 
the file window. TWO IMPORTANT NOTES: UniSon does not currently warn you 
if you are about to lose something by closing a window before you save it. 
Also, you are simply saving the device into the file window at this point. You 
have not saved anything to disk until you save the file window itself.

18. Try out the new device. Open a new circuit window and use one of these
devices. Connect an “Output” device and either a MIDI input device or a scroll
bar (set to “Hz”) and a button to the inputs. Try it out.

It is also possible to create a device directly from raw DSP code together with 
specifications of the I/O pins, internal local storage requirements, and required 
controls, but that is covered later. By now you should have a fair idea of the 
operation of UniSon. Most of it is meant to be fairly simple to use, although it is 
as yet incomplete.

–4–



Reference Notes

1. Menus

1.1 Apple menu
Contains the standard desk accessories and the usual “about” item.

1.2 File menu
“New File” and “Open File” allow UniSon data files to be created and 
accessed. A file contains device definitions and circuits which use those 
devices. The “Save”, “Save As...” and “Close” items will change according to 
whether or not the top window is a file window, a device window, or a circuit 
window.  Saving a file results in its being written to disk. Saving a device or a 
circuit only results in its being saved into the internal version of the file in 
memory. You must save the file itself before any changes to devices or 
circuits become permanent. Note also that the system is not polite enough to
warn you when you are about to close something without saving it first. It 
gleefully destroys your work instead. (Insert evil laugh here.) The “Quit” item 
is self-explanatory but the same warning applies. The “Revert” item is not 
implemented.

1.3 Edit menu
Unfortunately, this is largely unsupported. You use it with desk accessories, 
and to paste pictures into the device window. You may also use “clear” to 
delete devices and circuits from a file. Regrettably, cutting, copying, and 
pasted of devices, circuits, and portions of circuits is not yet completed.

1.4 Circuit menu
The “Compile” item forces UniSon to recompile the circuit in the top circuit 
window and reload it into the Sound Accelerator. This is around only for 
debugging and development reasons. Any change to a circuit automatically 
recompiles and reloads it anyway. You should never need this menu item at 
all. The “Enable/Disable Card” item will turn the Sound Accelerator or 
AudioMedia on and off. (Don’t forget to turn it on or you will not hear 
anything.) The “DSP Parameters...” item brings up a cryptic dialog for setting 
internal registers in the 56001 Digital Signal Processor. It can be used to set 
the internal clock rate correctly for the AudioMedia card. Most of the rest of 
this dialog should not be touched yet. You have been warned! “Choose Target
Card” is for a multiprocessor DSP system (DSP4). (It is disabled.)

–5–



2. Windows

2.1 File Window
Shows the devices and circuits that make up the file. You may select a device
or circuit and edit it by selecting its name and clicking on the appropriate 
“Edit” button. Double-clicking also does the job. You may also create a new 
device or circuit using the appropriate button as well. You may delete devices
or circuits by selecting them and using the “Clear” menu item. NOTE: Editing 
a device that is already present in a circuit is usually fatal! You may edit the 
device, but you should then do a “Save Device As...” with a new name. You 
can then fairly easily zap and replace the old versions of the device with the 
new version in all circuits that use it. 

2.2 Device window
Allows devices to be created or modified. Device pictures may be imported 
by using “Paste”. The picture should be in normal “PICT” format and all I/O 
pins MUST be positioned exact multiples of 5 pixels away from the top left 
corner. The “Read Code” button will read in a text file containing 
specifications of a device to be created “from scratch”. The format of this file 
is discussed later. The “Convert Circuit” button will allow a circuit to be 
encapsulated to form a device. All “Input pin” and “Output pin” devices and 
all controls will appear in the appropriate areas of the device window. I/O pins
and controls may be positioned inside the picture by selecting their names 
and then using the mouse. Clicking on an existing pin or control in the device
will highlight the corresponding name, and allow the pin or control to be 
repositioned. Don’t forget to save the device before closing it!

2.3 Circuit window
The most important type of window since it contains the “active” circuits that
produce sound. The three icons in the top right corner allow drawing, 
deleting, and moving of devices and connecting lines. (Except that moving is 
not implemented yet.) The highlighting of these icons is flakey. The area 
below that is the “chute” where a copy of the selected device appears. 
Dragging the device from the chute into the main part of the window adds it 
to the circuit. The names of all available devices appears below the chute. 
Connecting lines are simply drawn with the mouse. They must be vertical or 
horizontal, and the system will automatically place everything on a 5-pixel 
grid. (So you can be sloppy by ±2 pixels.) Device pins will NOT be connected 

–6–



simply by placing the devices so that their pins are coincident. You MUST use 
a connecting line.

3 Operation of UniSon circuits and the supplied devices

3.1 Basic concepts that you must know
In a digital signal processor, all data is typically represented by fixed point 

real numbers in the range -1≤X<1. All values, whether they represent 
amplitude, frequency, angles, or whatever must be mapped into this range. 
All input pins, output pins, and connecting lines in UniSon represent a 44.1 
kHz stream of values in this range (which I will refer to as ±1 although +1 is 
actually not a valid value). When you are using a value to represent 
frequency, the range ±1 represents ±22.05 kHz (the Nyquist frequency). 
When talking about amplitude, I assume that the value 1 is 0 dB, and 
therefore 0.5 is approximately -6 dB, etc. When representing angles, ±1 is 
clearly used to represent ±180 degrees or ±π radians. But these are simply 
different ways of interpreting the same values. Underneath it all, everything 
is always in the range ±1.

Each device in UniSon represents a segment of machine code for a 56001 
Digital Signal Processor. It may have one or more I/O pins which allow it to be 
connected to other devices. Each set of connected pins and “wires” in a 
circuit is assigned a memory location in the DSP (not in the Mac itself) and 
that location will always hold the current value of that digital signal (which 
will change at the rate of 44.1 kHz). Each device may also contain local 
values or tables internally. (For example, a sine oscillator stores the current 
angle value internally, and a envelope generator stores a table of envelope 
segments.) Devices may also contain controls which are objects that may be 
manipulated by the user. Each control may affect one or more I/O pins and/or 
internal storage values or tables of the device containing it. When a control is
manipulated by the user, most of the work is done by the host Macintosh, 
which in turn will place certain values directly into the appropriate DSP 
memory locations using fast interrupts. Simple controls like scroll bars are 
effectively “free” as far as the DSP is concerned. They take up no memory 
and insert no additional instructions into the DSP code at all.

3.2 The Scroll Bar and the Probe
Create a circuit containing only a Scroll Bar connected to a Probe. This  will

illustrate the nature of data in UniSon (and DSP in general). The top half of 
the scroll bar informs the user of its present value. The “units” box in the top 

–7–



right corner determines how this value is displayed, and how the slider 
behaves. The actual value produced by the scroll bar is actually a value in 
the range ±1, as always. The choices are:

Dec : Displays the value as a normal decimal number in the range ±1.
Hex: Displays the actual 24-bit hexadecimal value of the output.
Rad: Displays the value in radians in the range ±π.
Deg: Displays the value in degrees in the range ±180.
Hz: Displays the value as a frequency in the range ±22.05 kHz. When this

unit is selected, the slider acts logarithmically, since this is more 
useful for frequencies.

dB: Displays the value as an amplitude in dB. The output value 1.0 is 
treated as 0 dB, which means that 0.5 is -6.02 dB, 0.25 is -12.04 dB, 
etc. The output value 0.0 is really minus infinity on a dB scale, but the
arbitrary value -140 dB is displayed. This unit also causes the slider to
behave logarithmically.

±16: Displays the value as a number in the range ±16. In other words, it 
pretends that the decimal point follows the 4th bit. Don’t forget that 
the actual value produced is still ±1, however. This just multiplies the 
value by 16 in the display. However, this can be useful if the output 
value is eventually multiplied by 16 by an appropriate device, so as to
match the display. See the FM circuit examples.

The “sign” box in the top left corner may be used to restrict the output to 
only positive values, only negative values, or signed values. Note that when a
logarithmic scale such as Hz or dB is chosen, this will automatically change to
plus-only or minus-only since no logarithmic scale can possibly go through 
the value 0.

The larger slider controls the value of the output directly using either a 
linear or logarithmic scale. The smaller slider controls the sensitivity of the 
larger one. Every pixel that the smaller slider moves to the right decreases 
the range of the larger slider by a factor of 2. This allows a full 24 bits of 
precision to be used, with patience. By clicking on the displayed value, you 
may also simply type in the desired value.

The probe is simply the top half of a slider. The slider and probe may be 
set to any combination of units so that you can see what is really going on. 
Try it.

3.3 Other User-interface devices
The other user-oriented I/O devices are the button, the MIDI devices, the 

spinner, and the dial. The button is a simple on/off switch which produces a 

–8–



value of 0 or (almost) 1. The dial is a circular control that may be 
manipulated with the mouse, producing values in the range ±1. The spinner 
is an output-only version of the dial that may be used like a probe. It is useful
because it shows graphically the circular nature of all data in a DSP system. 
The MIDI devices (four of them) respond to MIDI note, pitch bend, aftertouch, 
and controller messages. The small box containing the channel number is a 
control which will allow you to select any MIDI channel, and the MIDI 
controller devices contains a similar box to select the controller number. The 
outputs of the MIDI note device represent note frequency, note velocity (a 
linear scale 0..1), and a gate which indicates that a note is being played (a 
0/1 value). Each MIDI note device responds only to note on/note off events, 
and is monophonic. However, you may have as may of these as you like, and 
if several are set to the same channel, UniSon will assign incoming notes to 
them relatively intelligently to provide a polyphonic system. This version of 
UniSon uses Apple’s MIDI Manager to obtain the incoming MIDI data. You 
must already have a copy of the MIDI Manager to use MIDI with UniSon. If you
don’t, please let me know. 

3.4 Sound generators
There are various oscillators and other signal generators provided. The 

white noise generator gives white noise at a specified amplitude. The 
“Random” device will give random output values which change at the 
specified frequency. For example, a frequency value of 2 Hz will change the 
output twice per second to a new random value. The sine oscillator will give a
clean, linearly interpolated sine wave with a given frequency, amplitude, and 
initial phase. For applications where the phase is important, the “Sync Sine” 
device has an additional sync input which will force the internal angle to 0 
when the sync input changes from 0 to 1. When used with a MIDI gate or 
button, this will cause all of the sine oscillators in an FM system, say, to begin
together at phase 0. There is also a “Cntl Sine” which is simply a combination
of a sine oscillator and two scroll bars. There are also square, pulse, 
sawtooth, and triangle oscillators. Be aware, however, that these produce 
“perfect” waves to the best of their ability. Such waves contain frequencies 
above the Nyquist frequency and will produce aliasing. The “Wave Table” 
device allows the user to specify a wave using a table of 256 24-bit values. 
Clicking on the small “wave” control will bring up a dialog box to let the user 
enter harmonic/amplitude/phase values to build a wave. Waves may also be 
saved and loaded from special wave files. 

–9–



3.5 Modifiers
There are three envelopes and two filters provided. The ASR is a simple 

attack-sustain-release envelope with a gate input and an envelope output. 
The attack may be either linear or exponential. The Envelope (8 seg) is an 8-
segment general envelope in which each segment may be log, linear, or 
exponential, or anywhere in between. This results in fundamental problems 
when working with a digital system with fixed time and amplitude 
resolutions. When you change one value, others may change to the nearest 
value that can actually be achieved. Keep the “Mult” field at 0 (linear 
segments) when in doubt. This thing needs work. Experiment with it. A much 
easier envelope is now provided by the “Envelope (table)” device. This uses 
DSP code that is really the same as the wavetable oscillator, and it is 
controlled by a 256-entry table in the same way. Try it. You’ll like it.

The devices “FOF” and “SOF” are simple first-order and second-order 
digital filters. The “a” values are the coefficients of the numerator polynomial
whose roots are the zeroes and the “b” values are the coefficients of the 
denominator polynomial whose roots are the poles. (You have to have a 
certain degree of familiarity with digital filters to understand and use these 
devices.)

3.6 Arithmetic
There are devices which will perform addition and multiplication, which are

fairly self-explanatory. There is also a “16xy” device which will multiply two 
values and then multiply the result by 16 (shifting it 4 bits left). This is useful 
in conjunction with the ±16 settings on the scroll bars at times. Note that the
output of all of these devices is cyclic and produces a result which is 
congruent to the “correct” result modulo 2, and is in the range ±1 (not 0..2). 
For example, adding 0.75 and 0.75 will give –0.5 which is congruent to the 
correct answer (1.5) modulo 2, but lies in the proper range. Try connecting 
two scroll bars to a “16xy” device and connecting a “spinner” and a “probe” 
to its output. Play with it for awhile.

3.7 I/O and device creation
There is an “Output” device which will cause sound to be produced at the 

output of the Sound Accelerator. For now, only one of these devices should 
be used, and stereo outputs are not available. 

There are also “Input Pin” and “Output Pin” devices which are used only to
build circuits which will subsequently be encapsulated to form a device. They 

–10–



do nothing but give names to certain signals for use by the editor.

4. Creation of Devices from DSP code.

Besides encapsulating a circuit to form a device, you may also create one 
directly by specifying its DSP code and all of the related information. This is 
not for the novice user. You must be familiar with 56001 machine code, and 
have an assembler and development system available to you, and preferably 
a simulator for testing also. To create a UniSon device, you must then create 
a “Device File” such as the one shown partially below (this is the “Control 
Sine” device). (The device files for all of the supplied devices are included 
with UniSon. Look at them for more examples.)

Pins
 forward
 input phase
 output sine

Storage
 angle = 000000
 freq  = 000000
 ampl  = 000000
 
Controls
 ScrollBar FreqCntl->freq
 ScrollBar AmplCntl->ampl
 
Code
 448000        <freq>  ; move freq,X0
 568000        <angle> ; move angle,A
 578040        <phase> ; add  X0,A     phase,B
 540018        <angle> ; add  A,B      A1,angle
 21A600                ; move B1,Y0
 44F400 000080         ; move #>$000080,X0
    etc. etc. etc.
Resources
 21 TTTTT ;21 cycles, all processors

The device file consists of five sections identified by keywords. The “Pins” 
section begins with a line containing only the word “Pins” and it defines the 
I/O connections to the device. The next line may (optionally) contain only the 
word “forward”. This is a bit hard to explain, but it means that the code in 
this device should be executed BEFORE the code for any device connected to
its outputs. Without this line, it will be done AFTER such devices. The “Unit 
Delay” device will NOT have “forward” in it so as to ensure proper execution 
order in digital filters. Almost all other devices SHOULD have “forward” in 
them. Each remaining line in this section consists of one of the keywords 

–11–



“input” or “output” followed by a name for the pin chosen by the user. This 
name will appear later in the device editor window in UniSon. The “Storage” 
section defines the internal memory locations (local variables/tables) needed 
by the device. Each line consists of a name for the location followed by an 
equal sign and its initial value(s). A table is formed simply by listing more 
than one value, separated by blanks, or by using #tablesize. For example 
“WaveTable = #256” could be used to allocate a 256-word table. All values 
entered are in hexadecimal. The “Controls” section defined the controls 
which will be provided to affect the operation of the device. Each line in this 
section contains the type of control, a name for the control which will appear 
in the device window, the symbol ‘->’, and a list of the I/O pins and/or 
storage locations (or tables) that should be affected by the control. The 
controls are really routines that form part of UniSon itself and which run on 
the Macintosh host, and not of the DSP. (It is possible, but much more 
difficult, to define your own kinds of controls as well.) Each type of control 
affects a fixed number of DSP values or tables, and the correct number of 
items must follow the “->” symbol. The type of controls currently defined are:

Type “ScrollBar” is a standard scroll bar which has a single output which is
set to its current value.

Type “Button” is a simple on/off button which has a single output that is 
set to 0 or 1 (actually 7FFFFF hexadecimal).

Type “EGcontrol” provides an envelope consisting of 8 general-purpose 
segments and a release rate. It is intended for use only by the “EG” device, 
and will not be discussed further here.

Type “Spinner” is a circular indicator within a rectangular box which 
monitors the state of a single signal line.

Type “Dial” is a circular knob which may be manipulated by the user to 
input a single value.

Type “Probe” is the top half of a scroll bar which monitors rather than 
controls a single signal value.

Type “NameBox” is used to let the user give a name to a device. This is 
primarily useful when encapsulating circuits to form devices since there must
be a way of identifying each control in the circuit uniquely. All devices which 
contain one or more controls will automatically be given a NameBox by the 
device editor. It should not be specified explicitly in a device file at all. A 
Name Box (or “Title”) has a dynamic width which always grows to the right 
edge of the device. Room must be left for it in the device’s picture.

There are also controls for the four MIDI controls and the wave table, but 
these are not really intended for use by the user.

–12–



The next section of a device file is the code section which contains the 
actual DSP code. Each line should contain a single 56001 DSP instruction in 
the form of one or two 6-digit hexadecimal values. These should come from 
the output listing of your 56001 assembler. (There is no automatic 
mechanism for importing .lod files, but the code must necessarily be quite 
small in order to be useful at 44.1 kHz so it is not a very big job to type it in.) 
There are a lot of restrictions on the instructions and addressing modes which
may be used, the major one being that you may ONLY use an X memory 
reference OR a Y memory reference, but NOT both, in each instruction. This is
because a signal may wind up in either X or Y memory and it cannot be 
predicted at compile time. The XY and Long and other more powerful 
addressing modes are too restricted to allow subsequent changes to a single 
instruction to be made without completely rewriting the code. Contact the 
author via email for a more complete list of restrictions if you are interested. 

Each 56001 instruction that refers to a memory location that is actually an
I/O pin or a storage location, or which contains a jump address, must be 
patched by UniSon’s built-in linkage editor in order to become part of a 
circuit. Therefore, all such instructions must be followed by the name of the 
pin or storage value and/or the jump label, enclosed in angle brackets. (See 
the example above.) The instruction referenced by a jump must contain the 
appropriate label, followed by a colon, at the start of the line containing that 
instruction. (See the EG.dev file for example.) It is convenient to place the 
original 56001 assembler source code on each line as a comment following a 
semicolon, as in the example above. 

The creation of such devices directly from 56001 code is not meant for 
novice users (actually, it is not meant for anyone other than the author). 
Please contact me by email for more details if you need them. The device 
files for all supplied devices are provided, and they provide a fairly complete 
set of examples of what you can and cannot do.

The last section is the Resources section. It should consist of a single line 
containing an integer giving the number of DSP clock cycles needed to run 
the code for the device, and a string of 5 flags (T/F) indicating which 
processors it may be assigned to an a multi-processor system. Most of this 
information is ignored except in a multiprocessor environment (and right now
the custom-built one in my office is the only one UniSon can use). So just use 
0 TTTTT and you will be no worse off.

5. Device Pictures

–13–



There is not too much to say here. The picture for any UniSon device may 
be created by your favorite drawing or painting program. It must them be 
copied and pasted into the device window in UniSon. The only restriction is 
that the tips of all of the I/O pins must be aligned to a 5-pixel grid relative to 
the top-left corner of the picture. I have provided a HyperCard stack which 
contains the pictures of all of the supplied devices, and whose background is 
the required 5-pixel grid. This makes the creation of pictures fairly easy. One 
of the cards contains pictures of the various kinds of controls. These may be 
placed freely (no grid restrictions). These are simply “dummies” of course 
which should be used so that you can see what the device will look like. That 
portion of the picture will be overwritten by a real, live control only when it 
becomes part of an actual live circuit. These pictures also show you the exact
size and shapes of the controls, which are established by the corresponding 
routines inside of UniSon and may not be changed. (Except for the title or 
name box, which always expands as far as it can to the right.) 

6. A Note About Speed
When working at 44.1 kHz, there is not a lot that you can do in real time 

even with a fairly powerful 20 MHz DSP chip such as the 56001 on the Sound 
Accelerator. At the rate of 10.25 MIPS, there is enough time to execute a little
more than 200 machine language instructions per sample. In a flexible 
system like UniSon in which virtually anything can change, all values must be
stored in memory locations and the 56001’s registers may only be used for 
temporary results within a device defined directly by DSP code. This means 
that many of the powerful pipelining features of the 56001 go to waste, and a
lot of “MOVE” instructions are needed. The “Sine” module generates very 
high quality linearly-interpolated sine waves with control over frequency, 
amplitude, and phase. It take about 20 instructions to do this. This means 
that only a few of these devices may be used in a circuit together with the 
other necessary devices before the Sound Accelerator loses its ability to keep
up. The other devices, like adders and multipliers and envelope generators, 
use up instructions, too. The amount that a single processor can do in this 
environment is rather dissapointing. Don’t expect to patch together a 4-
operator FM voice with 8-note polyphony. That would likely take 8 Sound 
Accelerators. I have a working multi-processor version of UniSon at the 
moment but it is a prototype which cannot easily be used by anyone else.  :(

7. Communication and Requests
This version of UniSon is a long way from being as complete as I would like

–14–



it to be, and there is a long list of additions and fixes waiting to be made. 
Please let me know of specific needs, wants, problems, bugs, comments, 
suggestions, etc. at the address(es) on the first page. If you need a specific 
kind of device, and if it is not too complex, and if I can come up with the time
or a graduate student, then please send a request. I can create the 
appropriate device file for you. On the other hand, if you have 56001 
expertise and create any useful or interesting devices, please mail them to 
me so that I may distribute them to other users. If you want to get future 
(more complete) versions of UniSon or new devices for it, please send me 
your address (email, preferably). 

NEW FEATURES ADDED FOR VERSION 0.62

1. Midi Manager support has been added. You must have MIDI Manager 
installed in your system and you must use the Patch Bay desk accessory or 
application to connect something to UniSon. Please contact the author if you 
don’t yet have MIDI Manager. The types of messages supported are note 
on/off, channel pressure (aftertouch), pitch bend, and all of the controllers 
(mod wheels, volume, joysticks, pedals, etc.). You must know the controller 
number, however, and type it into the dialog box that appears when the 
mouse is clicked on that number. (The ever-present mod wheel is controller 
number 1, which is the default value.) 

2. There is a “wave table” oscillator which will produce any wave shape 
with up to 128 harmonics using a 256-entry table. A dialog box allows you to 
specify wave shapes by means of amplitude and phase values. The results 
may be stored in special UniSon “wave” files, two of which are supplied as 
examples. If you wish to create these files from scratch or convert other 
sources of waveshapes into this format, please contact the author and I will 
supply you with the details of the required file format. 

3. Clicking on the value in a scroll bar now brings up a tiny dialog box 
allowing a new value to be entered directly. (Its about time I added this one!)

4. Bigger circuit windows are now possible.
5. The Audio Media card is now supported by its own menu item under the

“Circuit” menu.

–15–



NEW FEATURES ADDED FOR VERSION 0.70

1. Communication with MAX.
UniSon circuits may now communicate directly with patches in Opcode’s

MAX program. This operates at a very low interrupt-driven level of the Mac 
operating system. It is quite complex “under the hood” but should be very 
easy for you to use. Place the “UniSon MAX Object” in your “max-startup” 
folder in your Max folder. Place the “PitchTable” file where Max can find it 
easily, as well. You *must* be running system 7 for any of this to work! Run 
both UniSon and Max at the same time. Open the “Demos 0.70b1” file in 
UniSon and open the “Max FM Module” circuit. Enable the DSP card. Note 
that there are two “Max->UniSon” devices at the top. Open the file “UniSon 
21” from Max. Note the corresponding “UniSon” devices in this patch. You 
make the connection between Max and UniSon by sending a “connect” 
message to ANY UniSon object. (I generally make a “UniSon master” object 
for this purpose.) Select “UniSon’s M->U Port” from the dialog that appears. 
By the way, this works even if UniSon and Max are running on different 
Macintoshes connected by a network! Now Max and UniSon are 
communicating. If the is a UniSon object in Max and a “Max-UniSon” device in
Unison with the *same name*, then they are connected. That’s all there is to 
it. The lower 24 bits of a long integer value in Max will be sent to UniSon, 
which will treat it as a number in the range -1..1 as usual. This means that 
Max may have to scale things a bit to make the range fit properly. See the 
files “UniSon 21” and “Test MAX->UniSon” to see how to do this. The Max 
table in the file “Pitch Table” is useful for translating a note number in Max 
into a frequency value that UniSon can understand. The pascal program that I
used to create this file is also supplied, for your interest.

2. There is a new f(x) device which will use linear interpolation in a 256-
entry table to compute any function you like. The function must be supplied 
as a file containing 257 long integer values. A short pascal program which 
will generate such a file is included (CreateFxFile.p). 

3. There is a much nicer table-controlled envelope generator. (Device 
name “Envelope (table)”. Most of it is self-explanatory. Try it. (Double-click on
a vertex point in the envelope to remove it. But you have to be precise.)

4. The big one: UniSon handles a multiprocessor card for increased 
capabilities. Unfortunately, this one does not do you, the user, any good 

–16–



since there is only one prototype card in existence. I have disabled all of the 
options that support this card (I hope!). If you find one that I missed, *don’t* 
play with it. It will likely crash any Mac without the special card in it!

5. Devices may be a bit slower in this version of UniSon. There is a long 
and boring technical reason for this that involves the multiprocessor.

6. The format of the .dev files (for users that want to create their own 
devices directly from 56001 code) has changed. See the appropriate section 
earlier in the manual.

7. There is a new dialog that appears when you select “DSP Parameters” 
from the “Circuit” menu. *Most of this is not fully debugged yet.* I suggest 
that you use the “Audiomedia” button if needed, but leave the rest 
untouched. If you know a lot about 56001’s and the Sound Accelerator, go 
ahead and experiment.

8. There are likely a lot of other things that have been fixed, improved, or 
added which I have neglected to mention. Look around and try things. Please 
feel free to contact the author by email with any questions, problems, 
suggestions, or whatever. I will be glad to answer you. (I just don’t have 
much time to write manuals at the moment. :)

–17–



WISH LIST FOR UniSon:
There are a lot of unimplemented sections in UniSon, and a lot of missing 
devices. Here are the main things on my “to do” list right now, in no particular 
order. Please feel free to let me know which ones are high on your priority list, or 
suggest additions to the list.

A selection of better higher order filters.
Support for colour pictures and devices.
Printing of circuits.
Cut/Copy/Paste of circuits, subcircuits, devices, etc.
Movement of devices and lines in a circuit.
More flexible line drawing, allowing “L” shaped lines to be drawn in one 

operation. Also allow devices to be connected directly without a line.
Text fields for comments in a circuit.
Stereo outputs.
Automatic summing if several output devices appear in the circuit.
Prompting for a save operation if changes have been mode and the user 

attempts to close a circuit or device or file.
More robust operation when memory space becomes low. UniSon, like 

many other Macintosh applications, finds it difficult to handle all 
possible situations in which memory suddenly runs out. When memory 
space becomes low, system crashes are not uncommon. Make sure 
there is enough memory to avoid these problems.

An “undo” facility.
Improved device selection using hierarchical pop-up menus instead of the 

current “flat” scrolling list of titles. Also smaller and better (and reliable)
icons for tool selection.

More devices, including a delay line device.
Support for a multiprocessor to extend the capabilities of UniSon. I 

currently have a card containing 4 56001 DSPs which I built specifically 
for UniSon. Perhaps some commercially available card will be supported 
in the future. 

Statistics on the amount of DSP time and space consumed by a given 
circuit.

etc. etc. etc.

–18–


